A Mechanical Feedback Classification of Linear Mechanical Control Systems

We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marcin Nowicki, Witold Respondek
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> only, while the state-space of a mechanical control system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> consisting of configurations and velocities.