A Mechanical Feedback Classification of Linear Mechanical Control Systems
We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechani...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e304ff4e12b1411ba64388fdef52a55a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e304ff4e12b1411ba64388fdef52a55a2021-11-25T16:34:47ZA Mechanical Feedback Classification of Linear Mechanical Control Systems10.3390/app1122106692076-3417https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a2021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10669https://doaj.org/toc/2076-3417We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> only, while the state-space of a mechanical control system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> consisting of configurations and velocities.Marcin NowickiWitold RespondekMDPI AGarticlemechanical systemslinear feedbackclassificationdecompositionstabilizabilityTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10669, p 10669 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
mechanical systems linear feedback classification decomposition stabilizability Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
mechanical systems linear feedback classification decomposition stabilizability Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Marcin Nowicki Witold Respondek A Mechanical Feedback Classification of Linear Mechanical Control Systems |
description |
We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> only, while the state-space of a mechanical control system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> consisting of configurations and velocities. |
format |
article |
author |
Marcin Nowicki Witold Respondek |
author_facet |
Marcin Nowicki Witold Respondek |
author_sort |
Marcin Nowicki |
title |
A Mechanical Feedback Classification of Linear Mechanical Control Systems |
title_short |
A Mechanical Feedback Classification of Linear Mechanical Control Systems |
title_full |
A Mechanical Feedback Classification of Linear Mechanical Control Systems |
title_fullStr |
A Mechanical Feedback Classification of Linear Mechanical Control Systems |
title_full_unstemmed |
A Mechanical Feedback Classification of Linear Mechanical Control Systems |
title_sort |
mechanical feedback classification of linear mechanical control systems |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a |
work_keys_str_mv |
AT marcinnowicki amechanicalfeedbackclassificationoflinearmechanicalcontrolsystems AT witoldrespondek amechanicalfeedbackclassificationoflinearmechanicalcontrolsystems AT marcinnowicki mechanicalfeedbackclassificationoflinearmechanicalcontrolsystems AT witoldrespondek mechanicalfeedbackclassificationoflinearmechanicalcontrolsystems |
_version_ |
1718413108886634496 |