A Mechanical Feedback Classification of Linear Mechanical Control Systems

We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marcin Nowicki, Witold Respondek
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e304ff4e12b1411ba64388fdef52a55a
record_format dspace
spelling oai:doaj.org-article:e304ff4e12b1411ba64388fdef52a55a2021-11-25T16:34:47ZA Mechanical Feedback Classification of Linear Mechanical Control Systems10.3390/app1122106692076-3417https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a2021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10669https://doaj.org/toc/2076-3417We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> only, while the state-space of a mechanical control system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> consisting of configurations and velocities.Marcin NowickiWitold RespondekMDPI AGarticlemechanical systemslinear feedbackclassificationdecompositionstabilizabilityTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10669, p 10669 (2021)
institution DOAJ
collection DOAJ
language EN
topic mechanical systems
linear feedback
classification
decomposition
stabilizability
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle mechanical systems
linear feedback
classification
decomposition
stabilizability
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Marcin Nowicki
Witold Respondek
A Mechanical Feedback Classification of Linear Mechanical Control Systems
description We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> only, while the state-space of a mechanical control system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> consisting of configurations and velocities.
format article
author Marcin Nowicki
Witold Respondek
author_facet Marcin Nowicki
Witold Respondek
author_sort Marcin Nowicki
title A Mechanical Feedback Classification of Linear Mechanical Control Systems
title_short A Mechanical Feedback Classification of Linear Mechanical Control Systems
title_full A Mechanical Feedback Classification of Linear Mechanical Control Systems
title_fullStr A Mechanical Feedback Classification of Linear Mechanical Control Systems
title_full_unstemmed A Mechanical Feedback Classification of Linear Mechanical Control Systems
title_sort mechanical feedback classification of linear mechanical control systems
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/e304ff4e12b1411ba64388fdef52a55a
work_keys_str_mv AT marcinnowicki amechanicalfeedbackclassificationoflinearmechanicalcontrolsystems
AT witoldrespondek amechanicalfeedbackclassificationoflinearmechanicalcontrolsystems
AT marcinnowicki mechanicalfeedbackclassificationoflinearmechanicalcontrolsystems
AT witoldrespondek mechanicalfeedbackclassificationoflinearmechanicalcontrolsystems
_version_ 1718413108886634496