Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting

Matthew M Seavey, Yvonne PatersonDepartment of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USAAbstract: Targeting tumors using cancer vaccine therapeutics has several advantages including the induction of long-term immunity, prime boost strategies for additional tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew M Seavey, Yvonne Paterson
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2009
Materias:
Acceso en línea:https://doaj.org/article/e31ca0e3c7a741ccbd52298d2cf2eba4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e31ca0e3c7a741ccbd52298d2cf2eba4
record_format dspace
spelling oai:doaj.org-article:e31ca0e3c7a741ccbd52298d2cf2eba42021-12-02T02:47:57ZAntiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting1179-1314https://doaj.org/article/e31ca0e3c7a741ccbd52298d2cf2eba42009-10-01T00:00:00Zhttp://www.dovepress.com/antiangiogenesis-immunotherapy-induces-epitope-spreading-to-her-2neu-r-a3606https://doaj.org/toc/1179-1314Matthew M Seavey, Yvonne PatersonDepartment of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USAAbstract: Targeting tumors using cancer vaccine therapeutics has several advantages including the induction of long-term immunity, prime boost strategies for additional treatments and reduced side effects compared to conventional chemotherapeutics. However, one problem in targeting tumor antigens directly is that this can lead to antigen loss or immunoediting. We hypothesized that directing the immune response to a normal cell type required for tumor growth and survival could provide a more stable immunotherapeutic target. We thus examined the ability of an antiangiogenesis, Listeria monocytogenes (Lm)-based vector to deliver extracellular and intracellular fragments of the mouse vascular endothelial growth factor receptor-2/Flk-1 molecule, Lm-LLO-Flk-E1, and Lm-LLO-Flk-11 respectively, in an autochthonous model for Her-2/neu+ breast cancer. We found that these vaccines could cause epitope spreading to the endogenous tumor protein Her-2/neu and significantly delay tumor onset. However, tumors that grew out overtime accumulated mutations in the Her-2/neu molecule near or within cytotoxic T lymphocytes epitopes. We show here for the first time how an antiangiogenesis immunotherapy can be used to delay the onset of a spontaneous tumor through epitope spreading and determine a possible mechanism of how immunoediting of an endogenous tumor protein can allow for tumor escape and outgrowth in an autochthonous mouse model for Her-2/neu+ breast cancer.Keywords: Listeria, Her-2/neu, immunotherapy, antiangiogenesis, immunoediting Matthew M SeaveyYvonne PatersonDove Medical PressarticleNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENBreast Cancer: Targets and Therapy, Vol 2009, Iss default, Pp 19-30 (2009)
institution DOAJ
collection DOAJ
language EN
topic Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Matthew M Seavey
Yvonne Paterson
Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
description Matthew M Seavey, Yvonne PatersonDepartment of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USAAbstract: Targeting tumors using cancer vaccine therapeutics has several advantages including the induction of long-term immunity, prime boost strategies for additional treatments and reduced side effects compared to conventional chemotherapeutics. However, one problem in targeting tumor antigens directly is that this can lead to antigen loss or immunoediting. We hypothesized that directing the immune response to a normal cell type required for tumor growth and survival could provide a more stable immunotherapeutic target. We thus examined the ability of an antiangiogenesis, Listeria monocytogenes (Lm)-based vector to deliver extracellular and intracellular fragments of the mouse vascular endothelial growth factor receptor-2/Flk-1 molecule, Lm-LLO-Flk-E1, and Lm-LLO-Flk-11 respectively, in an autochthonous model for Her-2/neu+ breast cancer. We found that these vaccines could cause epitope spreading to the endogenous tumor protein Her-2/neu and significantly delay tumor onset. However, tumors that grew out overtime accumulated mutations in the Her-2/neu molecule near or within cytotoxic T lymphocytes epitopes. We show here for the first time how an antiangiogenesis immunotherapy can be used to delay the onset of a spontaneous tumor through epitope spreading and determine a possible mechanism of how immunoediting of an endogenous tumor protein can allow for tumor escape and outgrowth in an autochthonous mouse model for Her-2/neu+ breast cancer.Keywords: Listeria, Her-2/neu, immunotherapy, antiangiogenesis, immunoediting
format article
author Matthew M Seavey
Yvonne Paterson
author_facet Matthew M Seavey
Yvonne Paterson
author_sort Matthew M Seavey
title Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
title_short Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
title_full Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
title_fullStr Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
title_full_unstemmed Antiangiogenesis immunotherapy induces epitope spreading to Her-2/neu resulting in breast tumor immunoediting
title_sort antiangiogenesis immunotherapy induces epitope spreading to her-2/neu resulting in breast tumor immunoediting
publisher Dove Medical Press
publishDate 2009
url https://doaj.org/article/e31ca0e3c7a741ccbd52298d2cf2eba4
work_keys_str_mv AT matthewmseavey antiangiogenesisimmunotherapyinducesepitopespreadingtoher2neuresultinginbreasttumorimmunoediting
AT yvonnepaterson antiangiogenesisimmunotherapyinducesepitopespreadingtoher2neuresultinginbreasttumorimmunoediting
_version_ 1718402194433114112