A Functional Model for Structure Learning and Parameter Estimation in Continuous Time Bayesian Network: An Application in Identifying Patterns of Multiple Chronic Conditions
Bayesian networks are powerful statistical models to study the probabilistic relationships among sets of random variables with significant applications in disease modeling and prediction. Here, we propose a continuous time Bayesian network with conditional dependencies represented as regularized Poi...
Guardado en:
Autores principales: | Syed Hasib Akhter Faruqui, Adel Alaeddini, Jing Wang, Carlos A. Jaramillo, Mary Jo Pugh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e31ca8fda9884386b5a99d3ceef1fa70 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Length of hospital stay (LOS) modeling with mixture Poisson distribution
por: AR Rajaei Fard, et al.
Publicado: (2006) -
GMMPLS: A Novel Automatic State-Based Algorithm for Continuous Decoding in BMIs
por: Reza Foodeh, et al.
Publicado: (2021) -
Robust Image Stitching and Reconstruction of Rolling Stocks Using a Novel Kalman Filter With a Multiple-Hypothesis Measurement Model
por: Carlo Alberto Avizzano, et al.
Publicado: (2021) -
Mixture of Survival Analysis Models-Cluster-Weighted Weibull Distributions
por: Robert Csalodi, et al.
Publicado: (2021) -
A Principal Component Analysis-Boosted Dynamic Gaussian Mixture Clustering Model for Ignition Factors of Brazil’s Rainforests
por: Maofa Wang, et al.
Publicado: (2021)