Earth Observation Systems and Pasture Modeling: A Bibliometric Trend Analysis
An Earth observation system (EOS) is essential in monitoring and improving our understanding of how natural and managed agricultural landscapes change over time or respond to climate change and overgrazing. Such changes can be quantified using a pasture model (PM), a critical tool for monitoring cha...
Guardado en:
Autores principales: | Lwandile Nduku, Ahmed Mukalazi Kalumba, Cilence Munghemezulu, Zinhle Mashaba-Munghemezulu, George Johannes Chirima, Gbenga Abayomi Afuye, Emmanuel Tolulope Busayo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e31d0e42647e402c834195886f2d7bb2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data
por: Zinhle Mashaba-Munghemezulu, et al.
Publicado: (2021) -
Research Trends in the Remote Sensing of Phytoplankton Blooms: Results from Bibliometrics
por: Yuanrui Li, et al.
Publicado: (2021) - International journal of applied earth observation and geoinformation
-
Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization
por: Iulia Coca Neagoe, et al.
Publicado: (2021) -
Editorial: Best Practices in Bibliometrics & Bibliometric Services
por: Juan Ignacio Gorraiz
Publicado: (2021)