Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e32a077ee10e427a92017a371359e82d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e32a077ee10e427a92017a371359e82d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e32a077ee10e427a92017a371359e82d2021-12-02T15:43:17ZTime-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin10.1038/s42003-021-02101-52399-3642https://doaj.org/article/e32a077ee10e427a92017a371359e82d2021-05-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02101-5https://doaj.org/toc/2399-3642Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.Max-Aylmer DreierPhilipp AlthoffMohamad Javad NorahanStefan Alexander TennigkeitSamir F. El-MashtolyMathias LübbenCarsten KöttingTill RudackKlaus GerwertNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Max-Aylmer Dreier Philipp Althoff Mohamad Javad Norahan Stefan Alexander Tennigkeit Samir F. El-Mashtoly Mathias Lübben Carsten Kötting Till Rudack Klaus Gerwert Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
description |
Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications. |
format |
article |
author |
Max-Aylmer Dreier Philipp Althoff Mohamad Javad Norahan Stefan Alexander Tennigkeit Samir F. El-Mashtoly Mathias Lübben Carsten Kötting Till Rudack Klaus Gerwert |
author_facet |
Max-Aylmer Dreier Philipp Althoff Mohamad Javad Norahan Stefan Alexander Tennigkeit Samir F. El-Mashtoly Mathias Lübben Carsten Kötting Till Rudack Klaus Gerwert |
author_sort |
Max-Aylmer Dreier |
title |
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
title_short |
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
title_full |
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
title_fullStr |
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
title_full_unstemmed |
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
title_sort |
time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e32a077ee10e427a92017a371359e82d |
work_keys_str_mv |
AT maxaylmerdreier timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT philippalthoff timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT mohamadjavadnorahan timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT stefanalexandertennigkeit timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT samirfelmashtoly timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT mathiaslubben timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT carstenkotting timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT tillrudack timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin AT klausgerwert timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin |
_version_ |
1718385841613570048 |