Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin

Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.

Guardado en:
Detalles Bibliográficos
Autores principales: Max-Aylmer Dreier, Philipp Althoff, Mohamad Javad Norahan, Stefan Alexander Tennigkeit, Samir F. El-Mashtoly, Mathias Lübben, Carsten Kötting, Till Rudack, Klaus Gerwert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/e32a077ee10e427a92017a371359e82d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e32a077ee10e427a92017a371359e82d
record_format dspace
spelling oai:doaj.org-article:e32a077ee10e427a92017a371359e82d2021-12-02T15:43:17ZTime-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin10.1038/s42003-021-02101-52399-3642https://doaj.org/article/e32a077ee10e427a92017a371359e82d2021-05-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02101-5https://doaj.org/toc/2399-3642Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.Max-Aylmer DreierPhilipp AlthoffMohamad Javad NorahanStefan Alexander TennigkeitSamir F. El-MashtolyMathias LübbenCarsten KöttingTill RudackKlaus GerwertNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Max-Aylmer Dreier
Philipp Althoff
Mohamad Javad Norahan
Stefan Alexander Tennigkeit
Samir F. El-Mashtoly
Mathias Lübben
Carsten Kötting
Till Rudack
Klaus Gerwert
Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
description Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.
format article
author Max-Aylmer Dreier
Philipp Althoff
Mohamad Javad Norahan
Stefan Alexander Tennigkeit
Samir F. El-Mashtoly
Mathias Lübben
Carsten Kötting
Till Rudack
Klaus Gerwert
author_facet Max-Aylmer Dreier
Philipp Althoff
Mohamad Javad Norahan
Stefan Alexander Tennigkeit
Samir F. El-Mashtoly
Mathias Lübben
Carsten Kötting
Till Rudack
Klaus Gerwert
author_sort Max-Aylmer Dreier
title Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
title_short Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
title_full Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
title_fullStr Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
title_full_unstemmed Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
title_sort time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e32a077ee10e427a92017a371359e82d
work_keys_str_mv AT maxaylmerdreier timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT philippalthoff timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT mohamadjavadnorahan timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT stefanalexandertennigkeit timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT samirfelmashtoly timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT mathiaslubben timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT carstenkotting timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT tillrudack timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
AT klausgerwert timeresolvedspectroscopicandelectrophysiologicaldatarevealinsightsinthegatingmechanismofanionchannelrhodopsin
_version_ 1718385841613570048