Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin

Dreier et al. reports that the anion channelrhodopsin GtACR1 does not undergo a syn-cycle (light adapted ground state) and thus has a more efficient channel behaviour than CrChR2. They propose that constructing variants lacking syn-cycle could optimize channelrhodopsin for optogenetic applications.

Saved in:
Bibliographic Details
Main Authors: Max-Aylmer Dreier, Philipp Althoff, Mohamad Javad Norahan, Stefan Alexander Tennigkeit, Samir F. El-Mashtoly, Mathias Lübben, Carsten Kötting, Till Rudack, Klaus Gerwert
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
Online Access:https://doaj.org/article/e32a077ee10e427a92017a371359e82d
Tags: Add Tag
No Tags, Be the first to tag this record!