Biological process activity transformation of single cell gene expression for cross-species alignment
Single cell RNA-Seq data can report on cellular types and states, but low signal-to noise and sparse data can make interpretation of cellular state difficult. Here the authors propose a transformation strategy to map RNA-Seq data to biological process activities that are species-agnostic and allow f...
Enregistré dans:
Auteurs principaux: | Hongxu Ding, Andrew Blair, Ying Yang, Joshua M. Stuart |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e32e60d474f14311b3573e25cb1cad5f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
par: Lucas Seninge, et autres
Publié: (2021) -
Cross-species interference of gene expression
par: Irene de Bruijn, et autres
Publié: (2018) -
Pairwise Biological Network Alignment Based on Discrete Bat Algorithm
par: Jing Chen, et autres
Publié: (2021) -
Cross-species gene modules emerge from a systems biology approach to osteoarthritis
par: Alan James Mueller, et autres
Publié: (2017) -
Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation
par: Robin D. Lee, et autres
Publié: (2021)