A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
Multifarious hyperspectral image (HSI) classification methods based on convolutional neural networks (CNN) have been gradually proposed and achieve a promising classification performance. However, hyperspectral image classification still suffers from various challenges, including abundant redundant...
Guardado en:
Autores principales: | Dongxu Liu, Guangliang Han, Peixun Liu, Hang Yang, Xinglong Sun, Qingqing Li, Jiajia Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e34cd057da4b4e6ebba8d152865c16d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Real-Time 2-D Lidar Odometry Based on ICP
por: Fuxing Li, et al.
Publicado: (2021)