Predicting Delayed Neurocognitive Recovery After Non-cardiac Surgery Using Resting-State Brain Network Patterns Combined With Machine Learning
Delayed neurocognitive recovery (DNR) is a common subtype of postoperative neurocognitive disorders. An objective approach for identifying subjects at high risk of DNR is yet lacking. The present study aimed to predict DNR using the machine learning method based on multiple cognitive-related brain n...
Guardado en:
Autores principales: | Zhaoshun Jiang, Yuxi Cai, Xixue Zhang, Yating Lv, Mengting Zhang, Shihong Li, Guangwu Lin, Zhijun Bao, Songbin Liu, Weidong Gu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e35e10e114bd49b58cc8f99b3589b3fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Association between preoperative serum homocysteine and delayed neurocognitive recovery after non-cardiac surgery in elderly patients: a prospective observational study
por: Zhen-Feng Zhang, et al.
Publicado: (2021) -
Resting-state functional connectivity changes within the default mode network and the salience network after antipsychotic treatment in early-phase schizophrenia
por: Wang Y, et al.
Publicado: (2017) -
Changes of Brain Functional Connectivity in End-Stage Renal Disease Patients Receiving Peritoneal Dialysis Without Cognitive Decline
por: Ting-Yu Chang, et al.
Publicado: (2021) -
Cognitive Deficiency in Cannabis Consumers
por: Wurgan Rahadian, et al.
Publicado: (2021) -
Abnormal Network Homogeneity in the Right Superior Medial Frontal Gyrus in Cervical Dystonia
por: Shubao Wei, et al.
Publicado: (2021)