Reinforcement machine learning for closed-loop rTMS stimulation of brain networks
Guardado en:
Autores principales: | Dania Humaidan, David-Emanuel Vetter, Johanna Metsomaa, Maria Ermolova, Ulf Ziemann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e365af7ae35a40209a4476ae892d4826 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Individualized decoding of cortical excitability states using single-trial TMS responses analyzed by machine learning
por: Johanna Metsomaa, et al.
Publicado: (2021) -
Phase-coupled EEG sources predict motor cortex excitability probed with TMS
por: Maria Ermolova, et al.
Publicado: (2021) -
Real-time noise removal for closed-loop EEG–TMS
por: Tuomas P. Mutanen, et al.
Publicado: (2021) -
Six weeks of daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG-α phase entrainment in depressed adults
por: Josef Faller, et al.
Publicado: (2021) -
Repetitive transcranial magnetic stimulation (rTMS) in the treatment of bipolar depression
por: Tomáš Novák, et al.
Publicado: (2021)