Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury

Abstract Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. R. Huie, A. R. Ferguson, N. Kyritsis, J. Z. Pan, K.-A. Irvine, J. L. Nielson, P. G. Schupp, M. C. Oldham, J. C. Gensel, A. Lin, M. R. Segal, R. R. Ratan, J. C. Bresnahan, M. S. Beattie
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e3769cfbde174ac4a0a3ca905c1c4a7c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3769cfbde174ac4a0a3ca905c1c4a7c
record_format dspace
spelling oai:doaj.org-article:e3769cfbde174ac4a0a3ca905c1c4a7c2021-12-02T14:26:55ZMachine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury10.1038/s41598-021-82951-52045-2322https://doaj.org/article/e3769cfbde174ac4a0a3ca905c1c4a7c2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82951-5https://doaj.org/toc/2045-2322Abstract Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.J. R. HuieA. R. FergusonN. KyritsisJ. Z. PanK.-A. IrvineJ. L. NielsonP. G. SchuppM. C. OldhamJ. C. GenselA. LinM. R. SegalR. R. RatanJ. C. BresnahanM. S. BeattieNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
J. R. Huie
A. R. Ferguson
N. Kyritsis
J. Z. Pan
K.-A. Irvine
J. L. Nielson
P. G. Schupp
M. C. Oldham
J. C. Gensel
A. Lin
M. R. Segal
R. R. Ratan
J. C. Bresnahan
M. S. Beattie
Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
description Abstract Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.
format article
author J. R. Huie
A. R. Ferguson
N. Kyritsis
J. Z. Pan
K.-A. Irvine
J. L. Nielson
P. G. Schupp
M. C. Oldham
J. C. Gensel
A. Lin
M. R. Segal
R. R. Ratan
J. C. Bresnahan
M. S. Beattie
author_facet J. R. Huie
A. R. Ferguson
N. Kyritsis
J. Z. Pan
K.-A. Irvine
J. L. Nielson
P. G. Schupp
M. C. Oldham
J. C. Gensel
A. Lin
M. R. Segal
R. R. Ratan
J. C. Bresnahan
M. S. Beattie
author_sort J. R. Huie
title Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
title_short Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
title_full Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
title_fullStr Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
title_full_unstemmed Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury
title_sort machine intelligence identifies soluble tnfa as a therapeutic target for spinal cord injury
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e3769cfbde174ac4a0a3ca905c1c4a7c
work_keys_str_mv AT jrhuie machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT arferguson machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT nkyritsis machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT jzpan machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT kairvine machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT jlnielson machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT pgschupp machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT mcoldham machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT jcgensel machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT alin machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT mrsegal machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT rrratan machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT jcbresnahan machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
AT msbeattie machineintelligenceidentifiessolubletnfaasatherapeutictargetforspinalcordinjury
_version_ 1718391342642495488