Prognosis of Thoracic Cancer Using the Bierman Random Committee Machine Learning
Thoracic most cancers are a prime problem in the clinical field. Unexpected occur-ring cannot be predicted earlier but if the strategy is fine-tuned properly then the prognosis of cancer is not a major issue. But the problem is how to find out the proper layout with all possible features. The sector...
Guardado en:
Autor principal: | Ezzat A. Mansour |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
International Association of Online Engineering (IAOE)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3789a75c2fd4fb4b4f110b3d228b91e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
por: Halima EL Hamdaoui, et al.
Publicado: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
por: Sapna Juneja, et al.
Publicado: (2021) -
Application of Deep Neural Network Factor Analysis Model in Operating Room Management Nursing Analysis of Postoperative Infection Nursing after Thoracic Surgery
por: Jing Wen, et al.
Publicado: (2021) -
Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions
por: Ahsan Bin Tufail, et al.
Publicado: (2021) -
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
por: Edward H. Lee, et al.
Publicado: (2021)