Prognosis of Thoracic Cancer Using the Bierman Random Committee Machine Learning
Thoracic most cancers are a prime problem in the clinical field. Unexpected occur-ring cannot be predicted earlier but if the strategy is fine-tuned properly then the prognosis of cancer is not a major issue. But the problem is how to find out the proper layout with all possible features. The sector...
Enregistré dans:
Auteur principal: | Ezzat A. Mansour |
---|---|
Format: | article |
Langue: | EN |
Publié: |
International Association of Online Engineering (IAOE)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e3789a75c2fd4fb4b4f110b3d228b91e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
par: Halima EL Hamdaoui, et autres
Publié: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
par: Sapna Juneja, et autres
Publié: (2021) -
Application of Deep Neural Network Factor Analysis Model in Operating Room Management Nursing Analysis of Postoperative Infection Nursing after Thoracic Surgery
par: Jing Wen, et autres
Publié: (2021) -
Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions
par: Ahsan Bin Tufail, et autres
Publié: (2021) -
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
par: Edward H. Lee, et autres
Publié: (2021)