Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
Abstract In this paper we study the existence and multiplicity of solutions for the following nonlinear Choquard equation: − Δ u + V ( x ) u = [ | x | − μ ∗ | u | p ] | u | p − 2 u , x ∈ R N , $$\begin{aligned} -\Delta u+V(x)u=\bigl[ \vert x \vert ^{-\mu }\ast \vert u \vert ^{p}\bigr] \vert u \vert...
Guardado en:
Autores principales: | Tianfang Wang, Wen Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3843bdb58c5480da74a95615b3def4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential
por: Jing Zhang, et al.
Publicado: (2021) -
Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent
por: Zhou Shuai, et al.
Publicado: (2021) -
Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities
por: Che Guofeng, et al.
Publicado: (2021) -
Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential
por: Pan Jingjing, et al.
Publicado: (2021) -
The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems
por: Zihan Li, et al.
Publicado: (2021)