Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
Abstract In this paper we study the existence and multiplicity of solutions for the following nonlinear Choquard equation: − Δ u + V ( x ) u = [ | x | − μ ∗ | u | p ] | u | p − 2 u , x ∈ R N , $$\begin{aligned} -\Delta u+V(x)u=\bigl[ \vert x \vert ^{-\mu }\ast \vert u \vert ^{p}\bigr] \vert u \vert...
Enregistré dans:
Auteurs principaux: | Tianfang Wang, Wen Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e3843bdb58c5480da74a95615b3def4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential
par: Jing Zhang, et autres
Publié: (2021) -
Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent
par: Zhou Shuai, et autres
Publié: (2021) -
Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities
par: Che Guofeng, et autres
Publié: (2021) -
Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential
par: Pan Jingjing, et autres
Publié: (2021) -
The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems
par: Zihan Li, et autres
Publié: (2021)