INDEEDopt: a deep learning-based ReaxFF parameterization framework
Abstract Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INiti...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e38e18c02dd2449aa860d83c0501a7d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e38e18c02dd2449aa860d83c0501a7d3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e38e18c02dd2449aa860d83c0501a7d32021-12-02T15:45:30ZINDEEDopt: a deep learning-based ReaxFF parameterization framework10.1038/s41524-021-00534-42057-3960https://doaj.org/article/e38e18c02dd2449aa860d83c0501a7d32021-05-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00534-4https://doaj.org/toc/2057-3960Abstract Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INitial-DEsign Enhanced Deep learning-based OPTimization (INDEEDopt) framework to accelerate and improve the quality of the ReaxFF parameterization. The procedure starts with a Latin Hypercube Design (LHD) algorithm that is used to explore the parameter landscape extensively. The LHD passes the information about explored regions to a deep learning model, which finds the minimum discrepancy regions and eliminates unfeasible regions, and constructs a more comprehensive understanding of physically meaningful parameter space. We demonstrate the procedure here for the parameterization of a nickel–chromium binary force field and a tungsten–sulfide–carbon–oxygen–hydrogen quinary force field. We show that INDEEDopt produces improved accuracies in shorter development time compared to the conventional optimization method.Mert Y. SengulYao SongNadire NayirYawei GaoYing HungTirthankar DasguptaAdri C. T. van DuinNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Mert Y. Sengul Yao Song Nadire Nayir Yawei Gao Ying Hung Tirthankar Dasgupta Adri C. T. van Duin INDEEDopt: a deep learning-based ReaxFF parameterization framework |
description |
Abstract Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INitial-DEsign Enhanced Deep learning-based OPTimization (INDEEDopt) framework to accelerate and improve the quality of the ReaxFF parameterization. The procedure starts with a Latin Hypercube Design (LHD) algorithm that is used to explore the parameter landscape extensively. The LHD passes the information about explored regions to a deep learning model, which finds the minimum discrepancy regions and eliminates unfeasible regions, and constructs a more comprehensive understanding of physically meaningful parameter space. We demonstrate the procedure here for the parameterization of a nickel–chromium binary force field and a tungsten–sulfide–carbon–oxygen–hydrogen quinary force field. We show that INDEEDopt produces improved accuracies in shorter development time compared to the conventional optimization method. |
format |
article |
author |
Mert Y. Sengul Yao Song Nadire Nayir Yawei Gao Ying Hung Tirthankar Dasgupta Adri C. T. van Duin |
author_facet |
Mert Y. Sengul Yao Song Nadire Nayir Yawei Gao Ying Hung Tirthankar Dasgupta Adri C. T. van Duin |
author_sort |
Mert Y. Sengul |
title |
INDEEDopt: a deep learning-based ReaxFF parameterization framework |
title_short |
INDEEDopt: a deep learning-based ReaxFF parameterization framework |
title_full |
INDEEDopt: a deep learning-based ReaxFF parameterization framework |
title_fullStr |
INDEEDopt: a deep learning-based ReaxFF parameterization framework |
title_full_unstemmed |
INDEEDopt: a deep learning-based ReaxFF parameterization framework |
title_sort |
indeedopt: a deep learning-based reaxff parameterization framework |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e38e18c02dd2449aa860d83c0501a7d3 |
work_keys_str_mv |
AT mertysengul indeedoptadeeplearningbasedreaxffparameterizationframework AT yaosong indeedoptadeeplearningbasedreaxffparameterizationframework AT nadirenayir indeedoptadeeplearningbasedreaxffparameterizationframework AT yaweigao indeedoptadeeplearningbasedreaxffparameterizationframework AT yinghung indeedoptadeeplearningbasedreaxffparameterizationframework AT tirthankardasgupta indeedoptadeeplearningbasedreaxffparameterizationframework AT adrictvanduin indeedoptadeeplearningbasedreaxffparameterizationframework |
_version_ |
1718385781096054784 |