INDEEDopt: a deep learning-based ReaxFF parameterization framework
Abstract Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INiti...
Enregistré dans:
Auteurs principaux: | Mert Y. Sengul, Yao Song, Nadire Nayir, Yawei Gao, Ying Hung, Tirthankar Dasgupta, Adri C. T. van Duin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e38e18c02dd2449aa860d83c0501a7d3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure
par: Zifeng Wang, et autres
Publié: (2021) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
par: Jian Sun, et autres
Publié: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
par: Yingyan Wang, et autres
Publié: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
par: Wenwen Sun, et autres
Publié: (2021) -
Simulation Analysis of the Evolution of Sustainable Operation of Transport Infrastructure Projects under Government Regulation Based on Prospect Theory and BP Neural Network
par: Chongsen Ma, et autres
Publié: (2021)