INDEEDopt: a deep learning-based ReaxFF parameterization framework

Abstract Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INiti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mert Y. Sengul, Yao Song, Nadire Nayir, Yawei Gao, Ying Hung, Tirthankar Dasgupta, Adri C. T. van Duin
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/e38e18c02dd2449aa860d83c0501a7d3
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires