A Novel Model for Anomaly Detection in Network Traffic Based on Support Vector Machine and Clustering
New vulnerabilities and ever-evolving network attacks pose great threats to today’s cyberspace security. Anomaly detection in network traffic is a promising and effective technique to enhance network security. In addition to traditional statistical analysis and rule-based detection techniques, machi...
Guardado en:
Autores principales: | Qian Ma, Cong Sun, Baojiang Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e38e84a0d3ae47fd95319e56777aeb79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BCEAD: A Blockchain-Empowered Ensemble Anomaly Detection for Wireless Sensor Network via Isolation Forest
por: Xiong Yang, et al.
Publicado: (2021) -
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
por: Zengri Zeng, et al.
Publicado: (2021) -
Congestion Attack Detection in Intelligent Traffic Signal System: Combining Empirical and Analytical Methods
por: Yingxiao Xiang, et al.
Publicado: (2021) -
SCR-CC: A Novel Sensing Clustering Routing Algorithm Based on Collaborative Computing in Heterogeneous Sensor Networks
por: Zeyu Sun, et al.
Publicado: (2021) -
A Method of Recommending Physical Education Network Course Resources Based on Machine Learning Algorithms
por: Fu Wei
Publicado: (2021)