Radiomics side experiments and DAFIT approach in identifying pulmonary hypertension using Cardiac MRI derived radiomics based machine learning models
Abstract Side experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) us...
Guardado en:
Autores principales: | Sarv Priya, Tanya Aggarwal, Caitlin Ward, Girish Bathla, Mathews Jacob, Alicia Gerke, Eric A. Hoffman, Prashant Nagpal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3a8773830724016ab05eb04865c8652 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics
por: Sarv Priya, et al.
Publicado: (2021) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
por: Alessandro Stefano, et al.
Publicado: (2021) -
Brain MRI Radiomics Analysis of School-Aged Children with Tetralogy of Fallot
por: Yiwei Pu, et al.
Publicado: (2021) -
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
por: Samy Ammari, et al.
Publicado: (2021)