Predicting treatment response from longitudinal images using multi-task deep learning

Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Here, the authors present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction from longitudinal images in a multi-center study on rectal cancer.

Guardado en:
Detalles Bibliográficos
Autores principales: Cheng Jin, Heng Yu, Jia Ke, Peirong Ding, Yongju Yi, Xiaofeng Jiang, Xin Duan, Jinghua Tang, Daniel T. Chang, Xiaojian Wu, Feng Gao, Ruijiang Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/e3a87f083cd34359a4b0305fc498f5af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3a87f083cd34359a4b0305fc498f5af
record_format dspace
spelling oai:doaj.org-article:e3a87f083cd34359a4b0305fc498f5af2021-12-02T17:04:01ZPredicting treatment response from longitudinal images using multi-task deep learning10.1038/s41467-021-22188-y2041-1723https://doaj.org/article/e3a87f083cd34359a4b0305fc498f5af2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22188-yhttps://doaj.org/toc/2041-1723Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Here, the authors present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction from longitudinal images in a multi-center study on rectal cancer.Cheng JinHeng YuJia KePeirong DingYongju YiXiaofeng JiangXin DuanJinghua TangDaniel T. ChangXiaojian WuFeng GaoRuijiang LiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Cheng Jin
Heng Yu
Jia Ke
Peirong Ding
Yongju Yi
Xiaofeng Jiang
Xin Duan
Jinghua Tang
Daniel T. Chang
Xiaojian Wu
Feng Gao
Ruijiang Li
Predicting treatment response from longitudinal images using multi-task deep learning
description Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Here, the authors present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction from longitudinal images in a multi-center study on rectal cancer.
format article
author Cheng Jin
Heng Yu
Jia Ke
Peirong Ding
Yongju Yi
Xiaofeng Jiang
Xin Duan
Jinghua Tang
Daniel T. Chang
Xiaojian Wu
Feng Gao
Ruijiang Li
author_facet Cheng Jin
Heng Yu
Jia Ke
Peirong Ding
Yongju Yi
Xiaofeng Jiang
Xin Duan
Jinghua Tang
Daniel T. Chang
Xiaojian Wu
Feng Gao
Ruijiang Li
author_sort Cheng Jin
title Predicting treatment response from longitudinal images using multi-task deep learning
title_short Predicting treatment response from longitudinal images using multi-task deep learning
title_full Predicting treatment response from longitudinal images using multi-task deep learning
title_fullStr Predicting treatment response from longitudinal images using multi-task deep learning
title_full_unstemmed Predicting treatment response from longitudinal images using multi-task deep learning
title_sort predicting treatment response from longitudinal images using multi-task deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e3a87f083cd34359a4b0305fc498f5af
work_keys_str_mv AT chengjin predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT hengyu predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT jiake predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT peirongding predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT yongjuyi predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT xiaofengjiang predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT xinduan predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT jinghuatang predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT danieltchang predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT xiaojianwu predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT fenggao predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
AT ruijiangli predictingtreatmentresponsefromlongitudinalimagesusingmultitaskdeeplearning
_version_ 1718381881424084992