Predicting treatment response from longitudinal images using multi-task deep learning
Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Here, the authors present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction from longitudinal images in a multi-center study on rectal cancer.
Guardado en:
Autores principales: | Cheng Jin, Heng Yu, Jia Ke, Peirong Ding, Yongju Yi, Xiaofeng Jiang, Xin Duan, Jinghua Tang, Daniel T. Chang, Xiaojian Wu, Feng Gao, Ruijiang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3a87f083cd34359a4b0305fc498f5af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
HPS-Net: Multi-Task Network for Medical Image Segmentation with Predictable Performance
por: Xin Wei, et al.
Publicado: (2021) -
Multi-task deep learning for cardiac rhythm detection in wearable devices
por: Jessica Torres-Soto, et al.
Publicado: (2020) -
Real-time multi-task diffractive deep neural networks via hardware-software co-design
por: Yingjie Li, et al.
Publicado: (2021) -
A multi-task convolutional deep neural network for variant calling in single molecule sequencing
por: Ruibang Luo, et al.
Publicado: (2019) -
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images
por: Ke Xu, et al.
Publicado: (2021)