Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice

ABSTRACT In 2009, a novel H1N1 influenza A virus (2009 pH1N1) emerged and caused a pandemic. A human monoclonal antibody (hMAb; EM4C04), highly specific for the 2009 pH1N1 virus hemagglutinin (HA), was isolated from a severely ill 2009 pH1N1 virus-infected patient. We postulated that under immune pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher D. O’Donnell, Leatrice Vogel, Amber Wright, Suman R. Das, Jens Wrammert, Gui-Mei Li, Megan McCausland, Nai-Ying Zheng, Jonathan W. Yewdell, Rafi Ahmed, Patrick C. Wilson, Kanta Subbarao
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2012
Materias:
Acceso en línea:https://doaj.org/article/e3c80ee632d5479eb1e19c0af662f15d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3c80ee632d5479eb1e19c0af662f15d
record_format dspace
spelling oai:doaj.org-article:e3c80ee632d5479eb1e19c0af662f15d2021-11-15T15:39:01ZAntibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice10.1128/mBio.00120-122150-7511https://doaj.org/article/e3c80ee632d5479eb1e19c0af662f15d2012-07-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00120-12https://doaj.org/toc/2150-7511ABSTRACT In 2009, a novel H1N1 influenza A virus (2009 pH1N1) emerged and caused a pandemic. A human monoclonal antibody (hMAb; EM4C04), highly specific for the 2009 pH1N1 virus hemagglutinin (HA), was isolated from a severely ill 2009 pH1N1 virus-infected patient. We postulated that under immune pressure with EM4C04, the 2009 pH1N1 virus would undergo antigenic drift and mutate at sites that would identify the antibody binding site. To do so, we infected MDCK cells in the presence of EM4C04 and generated 11 escape mutants, displaying 7 distinct amino acid substitutions in the HA. Six substitutions greatly reduced MAb binding (K123N, D131E, K133T, G134S, K157N, and G158E). Residues 131, 133, and 134 are contiguous with residues 157 and 158 in the globular domain structure and contribute to a novel pH1N1 antibody epitope. One mutation near the receptor binding site, S186P, increased the binding affinity of the HA to the receptor. 186P and 131E are present in the highly virulent 1918 virus HA and were recently identified as virulence determinants in a mouse-passaged pH1N1 virus. We found that pH1N1 escape variants expressing these substitutions enhanced replication and lethality in mice compared to wild-type 2009 pH1N1 virus. The increased virulence of these viruses was associated with an increased affinity for α2,3 sialic acid receptors. Our study demonstrates that antibody pressure by an hMAb targeting a novel epitope in the Sa region of 2009 pH1N1 HA is able to inadvertently drive the development of a more virulent virus with altered receptor binding properties. This broadens our understanding of antigenic drift. IMPORTANCE Influenza viruses accumulate amino acid substitutions to evade the antibody response in a process known as antigenic drift, making it necessary to vaccinate against influenza annually. Mapping human monoclonal antibody (hMAb) epitopes is a necessary step towards understanding antigenic drift in humans. We defined the specificity of an hMAb that specifically targeted the 2009 pH1N1 virus and describe a novel epitope. In addition, we identified a previously unappreciated potential for antibody escape to enhance the pathogenicity of a virus. The escape mutation that we identified with in vitro immune pressure was independently reported by other investigators using in vivo selection in nonimmune mice. Although in vitro generation of escape mutants is unlikely to recapitulate antigenic drift in its entirety, the data demonstrate that pressure by a human monoclonal antibody targeting a novel epitope in the hemagglutinin of the 2009 pandemic H1N1 virus can inadvertently drive the development of escape mutants, of which a subset have increased virulence and altered receptor binding properties.Christopher D. O’DonnellLeatrice VogelAmber WrightSuman R. DasJens WrammertGui-Mei LiMegan McCauslandNai-Ying ZhengJonathan W. YewdellRafi AhmedPatrick C. WilsonKanta SubbaraoAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 3, Iss 3 (2012)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Christopher D. O’Donnell
Leatrice Vogel
Amber Wright
Suman R. Das
Jens Wrammert
Gui-Mei Li
Megan McCausland
Nai-Ying Zheng
Jonathan W. Yewdell
Rafi Ahmed
Patrick C. Wilson
Kanta Subbarao
Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
description ABSTRACT In 2009, a novel H1N1 influenza A virus (2009 pH1N1) emerged and caused a pandemic. A human monoclonal antibody (hMAb; EM4C04), highly specific for the 2009 pH1N1 virus hemagglutinin (HA), was isolated from a severely ill 2009 pH1N1 virus-infected patient. We postulated that under immune pressure with EM4C04, the 2009 pH1N1 virus would undergo antigenic drift and mutate at sites that would identify the antibody binding site. To do so, we infected MDCK cells in the presence of EM4C04 and generated 11 escape mutants, displaying 7 distinct amino acid substitutions in the HA. Six substitutions greatly reduced MAb binding (K123N, D131E, K133T, G134S, K157N, and G158E). Residues 131, 133, and 134 are contiguous with residues 157 and 158 in the globular domain structure and contribute to a novel pH1N1 antibody epitope. One mutation near the receptor binding site, S186P, increased the binding affinity of the HA to the receptor. 186P and 131E are present in the highly virulent 1918 virus HA and were recently identified as virulence determinants in a mouse-passaged pH1N1 virus. We found that pH1N1 escape variants expressing these substitutions enhanced replication and lethality in mice compared to wild-type 2009 pH1N1 virus. The increased virulence of these viruses was associated with an increased affinity for α2,3 sialic acid receptors. Our study demonstrates that antibody pressure by an hMAb targeting a novel epitope in the Sa region of 2009 pH1N1 HA is able to inadvertently drive the development of a more virulent virus with altered receptor binding properties. This broadens our understanding of antigenic drift. IMPORTANCE Influenza viruses accumulate amino acid substitutions to evade the antibody response in a process known as antigenic drift, making it necessary to vaccinate against influenza annually. Mapping human monoclonal antibody (hMAb) epitopes is a necessary step towards understanding antigenic drift in humans. We defined the specificity of an hMAb that specifically targeted the 2009 pH1N1 virus and describe a novel epitope. In addition, we identified a previously unappreciated potential for antibody escape to enhance the pathogenicity of a virus. The escape mutation that we identified with in vitro immune pressure was independently reported by other investigators using in vivo selection in nonimmune mice. Although in vitro generation of escape mutants is unlikely to recapitulate antigenic drift in its entirety, the data demonstrate that pressure by a human monoclonal antibody targeting a novel epitope in the hemagglutinin of the 2009 pandemic H1N1 virus can inadvertently drive the development of escape mutants, of which a subset have increased virulence and altered receptor binding properties.
format article
author Christopher D. O’Donnell
Leatrice Vogel
Amber Wright
Suman R. Das
Jens Wrammert
Gui-Mei Li
Megan McCausland
Nai-Ying Zheng
Jonathan W. Yewdell
Rafi Ahmed
Patrick C. Wilson
Kanta Subbarao
author_facet Christopher D. O’Donnell
Leatrice Vogel
Amber Wright
Suman R. Das
Jens Wrammert
Gui-Mei Li
Megan McCausland
Nai-Ying Zheng
Jonathan W. Yewdell
Rafi Ahmed
Patrick C. Wilson
Kanta Subbarao
author_sort Christopher D. O’Donnell
title Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
title_short Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
title_full Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
title_fullStr Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
title_full_unstemmed Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice
title_sort antibody pressure by a human monoclonal antibody targeting the 2009 pandemic h1n1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice
publisher American Society for Microbiology
publishDate 2012
url https://doaj.org/article/e3c80ee632d5479eb1e19c0af662f15d
work_keys_str_mv AT christopherdodonnell antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT leatricevogel antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT amberwright antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT sumanrdas antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT jenswrammert antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT guimeili antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT meganmccausland antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT naiyingzheng antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT jonathanwyewdell antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT rafiahmed antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT patrickcwilson antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
AT kantasubbarao antibodypressurebyahumanmonoclonalantibodytargetingthe2009pandemich1n1virushemagglutinindrivestheemergenceofaviruswithincreasedvirulenceinmice
_version_ 1718427858950422528