Forecasting mergers and acquisitions failure based on partial-sigmoid neural network and feature selection.
Traditional forecasting methods in mergers and acquisitions (M&A) data have two limitations that significantly reduce forecasting accuracy: (1) the imbalance of data, that is, the failure cases of M&A are far fewer than the successful cases (82%/18% of our sample), and (2) both the bidder an...
Enregistré dans:
Auteurs principaux: | Wenbin Bi, Qiusheng Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e3da5f56e8ad4728ac17c186247e1f44 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Forecasting mergers and acquisitions failure based on partial-sigmoid neural network and feature selection
par: Wenbin Bi, et autres
Publié: (2021) -
Measuring the effectiveness of mergers and acquisitions: features of the application of the DEA method
par: S. N. Virabyan
Publié: (2018) -
Risk Management in Mergers and Acquisitions
par: D. O. Verdiev
Publié: (2015) -
THE ROLE OF THE BUDGETING SYSTEM IN MERGERS AND ACQUISITIONS
par: A. O. Volodina, et autres
Publié: (2019) -
World and Russian Market of Mergers and Acquisitions
par: N. S. Zagrebel’Naya
Publié: (2015)