Forecasting mergers and acquisitions failure based on partial-sigmoid neural network and feature selection.
Traditional forecasting methods in mergers and acquisitions (M&A) data have two limitations that significantly reduce forecasting accuracy: (1) the imbalance of data, that is, the failure cases of M&A are far fewer than the successful cases (82%/18% of our sample), and (2) both the bidder an...
Guardado en:
Autores principales: | Wenbin Bi, Qiusheng Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3da5f56e8ad4728ac17c186247e1f44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting mergers and acquisitions failure based on partial-sigmoid neural network and feature selection
por: Wenbin Bi, et al.
Publicado: (2021) -
Measuring the effectiveness of mergers and acquisitions: features of the application of the DEA method
por: S. N. Virabyan
Publicado: (2018) -
Risk Management in Mergers and Acquisitions
por: D. O. Verdiev
Publicado: (2015) -
THE ROLE OF THE BUDGETING SYSTEM IN MERGERS AND ACQUISITIONS
por: A. O. Volodina, et al.
Publicado: (2019) -
World and Russian Market of Mergers and Acquisitions
por: N. S. Zagrebel’Naya
Publicado: (2015)