Network-aided Bi-Clustering for discovering cancer subtypes
Bi-clustering is a widely used data mining technique for analyzing gene expression data. It simultaneously groups genes and samples of an input gene expression data matrix to discover bi-clusters that relevant samples exhibit similar gene expression profiles over a subset of genes. The discovered bi...
Guardado en:
Autores principales: | Guoxian Yu, Xianxue Yu, Jun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3dbfc42c20649daa8fcb3b3d785b465 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tumour-specific Causal Inference Discovers Distinct Disease Mechanisms Underlying Cancer Subtypes
por: Yifan Xue, et al.
Publicado: (2019) -
Spectral clustering using Nyström approximation for the accurate identification of cancer molecular subtypes
por: Mingguang Shi, et al.
Publicado: (2017) -
Discovering latent node Information by graph attention network
por: Weiwei Gu, et al.
Publicado: (2021) -
Identification of gastric cancer subtypes based on pathway clustering
por: Lin Li, et al.
Publicado: (2021) -
Identification of immune-related subtypes of colorectal cancer to improve antitumor immunotherapy
por: Xiaobo Zheng, et al.
Publicado: (2021)