Cross-validation estimate of the number of clusters in a network

Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable asses...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tatsuro Kawamoto, Yoshiyuki Kabashima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a189
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error.