Cross-validation estimate of the number of clusters in a network

Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable asses...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tatsuro Kawamoto, Yoshiyuki Kabashima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a189
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3dda50ef2b04a89ac1abdae0005a189
record_format dspace
spelling oai:doaj.org-article:e3dda50ef2b04a89ac1abdae0005a1892021-12-02T11:52:25ZCross-validation estimate of the number of clusters in a network10.1038/s41598-017-03623-x2045-2322https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a1892017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03623-xhttps://doaj.org/toc/2045-2322Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error.Tatsuro KawamotoYoshiyuki KabashimaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-17 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tatsuro Kawamoto
Yoshiyuki Kabashima
Cross-validation estimate of the number of clusters in a network
description Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error.
format article
author Tatsuro Kawamoto
Yoshiyuki Kabashima
author_facet Tatsuro Kawamoto
Yoshiyuki Kabashima
author_sort Tatsuro Kawamoto
title Cross-validation estimate of the number of clusters in a network
title_short Cross-validation estimate of the number of clusters in a network
title_full Cross-validation estimate of the number of clusters in a network
title_fullStr Cross-validation estimate of the number of clusters in a network
title_full_unstemmed Cross-validation estimate of the number of clusters in a network
title_sort cross-validation estimate of the number of clusters in a network
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a189
work_keys_str_mv AT tatsurokawamoto crossvalidationestimateofthenumberofclustersinanetwork
AT yoshiyukikabashima crossvalidationestimateofthenumberofclustersinanetwork
_version_ 1718395077540184064