Cross-validation estimate of the number of clusters in a network
Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable asses...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a189 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e3dda50ef2b04a89ac1abdae0005a189 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e3dda50ef2b04a89ac1abdae0005a1892021-12-02T11:52:25ZCross-validation estimate of the number of clusters in a network10.1038/s41598-017-03623-x2045-2322https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a1892017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03623-xhttps://doaj.org/toc/2045-2322Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error.Tatsuro KawamotoYoshiyuki KabashimaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-17 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tatsuro Kawamoto Yoshiyuki Kabashima Cross-validation estimate of the number of clusters in a network |
description |
Abstract Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error. |
format |
article |
author |
Tatsuro Kawamoto Yoshiyuki Kabashima |
author_facet |
Tatsuro Kawamoto Yoshiyuki Kabashima |
author_sort |
Tatsuro Kawamoto |
title |
Cross-validation estimate of the number of clusters in a network |
title_short |
Cross-validation estimate of the number of clusters in a network |
title_full |
Cross-validation estimate of the number of clusters in a network |
title_fullStr |
Cross-validation estimate of the number of clusters in a network |
title_full_unstemmed |
Cross-validation estimate of the number of clusters in a network |
title_sort |
cross-validation estimate of the number of clusters in a network |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/e3dda50ef2b04a89ac1abdae0005a189 |
work_keys_str_mv |
AT tatsurokawamoto crossvalidationestimateofthenumberofclustersinanetwork AT yoshiyukikabashima crossvalidationestimateofthenumberofclustersinanetwork |
_version_ |
1718395077540184064 |