Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups. |
---|