Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans

Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.

Guardado en:
Detalles Bibliográficos
Autores principales: Hwan-ho Cho, Ho Yun Lee, Eunjin Kim, Geewon Lee, Jonghoon Kim, Junmo Kwon, Hyunjin Park
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3df764d36224d0dbccb596f1c5bbbad
record_format dspace
spelling oai:doaj.org-article:e3df764d36224d0dbccb596f1c5bbbad2021-11-14T12:12:06ZRadiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans10.1038/s42003-021-02814-72399-3642https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02814-7https://doaj.org/toc/2399-3642Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.Hwan-ho ChoHo Yun LeeEunjin KimGeewon LeeJonghoon KimJunmo KwonHyunjin ParkNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Hwan-ho Cho
Ho Yun Lee
Eunjin Kim
Geewon Lee
Jonghoon Kim
Junmo Kwon
Hyunjin Park
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
description Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.
format article
author Hwan-ho Cho
Ho Yun Lee
Eunjin Kim
Geewon Lee
Jonghoon Kim
Junmo Kwon
Hyunjin Park
author_facet Hwan-ho Cho
Ho Yun Lee
Eunjin Kim
Geewon Lee
Jonghoon Kim
Junmo Kwon
Hyunjin Park
author_sort Hwan-ho Cho
title Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
title_short Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
title_full Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
title_fullStr Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
title_full_unstemmed Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
title_sort radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from ct scans
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad
work_keys_str_mv AT hwanhocho radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT hoyunlee radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT eunjinkim radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT geewonlee radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT jonghoonkim radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT junmokwon radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
AT hyunjinpark radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans
_version_ 1718429377600946176