Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e3df764d36224d0dbccb596f1c5bbbad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e3df764d36224d0dbccb596f1c5bbbad2021-11-14T12:12:06ZRadiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans10.1038/s42003-021-02814-72399-3642https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02814-7https://doaj.org/toc/2399-3642Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.Hwan-ho ChoHo Yun LeeEunjin KimGeewon LeeJonghoon KimJunmo KwonHyunjin ParkNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Hwan-ho Cho Ho Yun Lee Eunjin Kim Geewon Lee Jonghoon Kim Junmo Kwon Hyunjin Park Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
description |
Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups. |
format |
article |
author |
Hwan-ho Cho Ho Yun Lee Eunjin Kim Geewon Lee Jonghoon Kim Junmo Kwon Hyunjin Park |
author_facet |
Hwan-ho Cho Ho Yun Lee Eunjin Kim Geewon Lee Jonghoon Kim Junmo Kwon Hyunjin Park |
author_sort |
Hwan-ho Cho |
title |
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
title_short |
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
title_full |
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
title_fullStr |
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
title_full_unstemmed |
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans |
title_sort |
radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from ct scans |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad |
work_keys_str_mv |
AT hwanhocho radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT hoyunlee radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT eunjinkim radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT geewonlee radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT jonghoonkim radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT junmokwon radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans AT hyunjinpark radiomicsguideddeepneuralnetworksstratifylungadenocarcinomaprognosisfromctscans |
_version_ |
1718429377600946176 |