Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
Cho et al. use a radiomics-guided deep-learning approach to model the prognosis of lung adenocarcinoma from CT scan data. This study demonstrates the utility of this technology as a predictive approach for stratifying clinical prognostic groups.
Enregistré dans:
Auteurs principaux: | Hwan-ho Cho, Ho Yun Lee, Eunjin Kim, Geewon Lee, Jonghoon Kim, Junmo Kwon, Hyunjin Park |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e3df764d36224d0dbccb596f1c5bbbad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Metabolic Radiomics for Pretreatment 18F-FDG PET/CT to Characterize Locally Advanced Breast Cancer: Histopathologic Characteristics, Response to Neoadjuvant Chemotherapy, and Prognosis
par: Seunggyun Ha, et autres
Publié: (2017) -
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
par: Farzad Khalvati, et autres
Publié: (2019) -
Study on the prognosis predictive model of COVID-19 patients based on CT radiomics
par: Dandan Wang, et autres
Publié: (2021) -
CT Radiomics and Machine-Learning Models for Predicting Tumor-Stroma Ratio in Patients With Pancreatic Ductal Adenocarcinoma
par: Yinghao Meng, et autres
Publié: (2021) -
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
par: Jun Pyo Kim, et autres
Publié: (2021)