Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space

In this article, we look at a surface associated with real-valued functions. The surface is known as a harmonic surface, and its unit normal vector and mean curvature have been used to characterize it. We use the Bishop-Darboux frame (B-Darboux frame) in Euclidean 3-space E3 to study and explain the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: E. M. Solouma, Ibrahim AL-Dayel
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/e3f03c9a5ec74cf589ee8c926494780c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e3f03c9a5ec74cf589ee8c926494780c
record_format dspace
spelling oai:doaj.org-article:e3f03c9a5ec74cf589ee8c926494780c2021-11-29T00:55:33ZHarmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space1687-913910.1155/2021/5269655https://doaj.org/article/e3f03c9a5ec74cf589ee8c926494780c2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/5269655https://doaj.org/toc/1687-9139In this article, we look at a surface associated with real-valued functions. The surface is known as a harmonic surface, and its unit normal vector and mean curvature have been used to characterize it. We use the Bishop-Darboux frame (B-Darboux frame) in Euclidean 3-space E3 to study and explain the geometric characteristics of the harmonic evolute surfaces of tubular surfaces. The characterizations of the harmonic evolute surface’s ϱ and ς parameter curves are evaluated, and then, they are compared. Finally, an example of a tubular surface’s harmonic evolute surface is presented, along with visuals of these surfaces.E. M. SoloumaIbrahim AL-DayelHindawi LimitedarticlePhysicsQC1-999ENAdvances in Mathematical Physics, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
E. M. Solouma
Ibrahim AL-Dayel
Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
description In this article, we look at a surface associated with real-valued functions. The surface is known as a harmonic surface, and its unit normal vector and mean curvature have been used to characterize it. We use the Bishop-Darboux frame (B-Darboux frame) in Euclidean 3-space E3 to study and explain the geometric characteristics of the harmonic evolute surfaces of tubular surfaces. The characterizations of the harmonic evolute surface’s ϱ and ς parameter curves are evaluated, and then, they are compared. Finally, an example of a tubular surface’s harmonic evolute surface is presented, along with visuals of these surfaces.
format article
author E. M. Solouma
Ibrahim AL-Dayel
author_facet E. M. Solouma
Ibrahim AL-Dayel
author_sort E. M. Solouma
title Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
title_short Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
title_full Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
title_fullStr Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
title_full_unstemmed Harmonic Evolute Surface of Tubular Surfaces via B-Darboux Frame in Euclidean 3-Space
title_sort harmonic evolute surface of tubular surfaces via b-darboux frame in euclidean 3-space
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/e3f03c9a5ec74cf589ee8c926494780c
work_keys_str_mv AT emsolouma harmonicevolutesurfaceoftubularsurfacesviabdarbouxframeineuclidean3space
AT ibrahimaldayel harmonicevolutesurfaceoftubularsurfacesviabdarbouxframeineuclidean3space
_version_ 1718407805073883136