Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal
Manal A Elsheikh,1 Yosra SR Elnaggar,1 Eman Y Gohar,2 Ossama Y Abdallah11Department of Pharmaceutics, 2Department of Pharmacology and Toxicology, Alexandria University, Alexandria, EgyptAbstract: Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3f2e141a346498f95f0be9192efc508 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e3f2e141a346498f95f0be9192efc508 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e3f2e141a346498f95f0be9192efc5082021-12-02T00:30:23ZNanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal1176-91141178-2013https://doaj.org/article/e3f2e141a346498f95f0be9192efc5082012-07-01T00:00:00Zhttp://www.dovepress.com/nanoemulsion-liquid-preconcentrates-for-raloxifene-hydrochloride-optim-a10448https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Manal A Elsheikh,1 Yosra SR Elnaggar,1 Eman Y Gohar,2 Ossama Y Abdallah11Department of Pharmaceutics, 2Department of Pharmacology and Toxicology, Alexandria University, Alexandria, EgyptAbstract: Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis and prevention of breast and endometrial cancer. By virtue of extensive presystemic clearance, RLX bioavailability is only 2%. The current study aimed to tailor and characterize RLX-loaded self-nanoemulsifying drug-delivery systems (SNEDDS) using bioactive excipients affecting drug metabolism. The potential of oral nanocarriers to enhance RLX delivery to endocrine target organs was assessed in fasted and fed female Wistar rats using high-performance liquid chromatography. RLX was loaded in the dissolved and dispersed status in the alkalinized (A-SNEDDS) and nonalkalinized (NA-SNEDDS) systems, respectively. Optimization and assessment relied on solubility studies, emulsification efficiency, phase diagrams, dilution robustness, cloud point, particle size, zeta potential (ZP), polydispersity index (PDI), and transmission electron microscopy. In vitro release was assessed using dialysis bag versus dissolution cup methods. NA-SNEDDS were developed with suitable globule size (38.49 ± 4.30 nm), ZP (31.70 ± 3.58 mV), PDI (0.31 ± 0.02), and cloud point (85°C). A-SNEDDS exhibited good globule size (35 ± 2.80 nm), adequate PDI (0.28 ± 0.06), and lower ZP magnitude (-21.20 ± 3.46 mV). Transmission electron microscopy revealed spherical globules and contended data of size analysis. Release studies demonstrated a nonsignificant enhancement of RLX release from NA-SNEDDS compared to drug suspension with the lowest release shown by A-SNEDDS. A conflicting result was elucidated from in vivo trial. A significant enhancement in RLX uptake by endocrine organs was observed after nanocarrier administration compared to RLX suspension. In vivo studies reflected a poor in vitro/in vivo correlation, recommended nanocarrier administration before meals, and did not reveal any advantage for drug loading in the solubilized form (A-SNEDDS). To conclude, NA-SNEDDS possessed superior in vitro characteristics to A-SNEDDS, with equal in vivo potential. NA-SNEDDS elaborated in this work could successfully double RLX delivery to endocrine target organs, with promising consequences of lower dose and side effects of the drug.Keywords: self-nanoemulsifying drug-delivery system, Biopharmaceutics Drug Disposition Classification System, Cremophor EL, endocrine organs, selective estrogen-receptor modulatorElsheikh MAElnaggar YSGohar EYAbdallah OYDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 3787-3802 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Elsheikh MA Elnaggar YS Gohar EY Abdallah OY Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
description |
Manal A Elsheikh,1 Yosra SR Elnaggar,1 Eman Y Gohar,2 Ossama Y Abdallah11Department of Pharmaceutics, 2Department of Pharmacology and Toxicology, Alexandria University, Alexandria, EgyptAbstract: Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis and prevention of breast and endometrial cancer. By virtue of extensive presystemic clearance, RLX bioavailability is only 2%. The current study aimed to tailor and characterize RLX-loaded self-nanoemulsifying drug-delivery systems (SNEDDS) using bioactive excipients affecting drug metabolism. The potential of oral nanocarriers to enhance RLX delivery to endocrine target organs was assessed in fasted and fed female Wistar rats using high-performance liquid chromatography. RLX was loaded in the dissolved and dispersed status in the alkalinized (A-SNEDDS) and nonalkalinized (NA-SNEDDS) systems, respectively. Optimization and assessment relied on solubility studies, emulsification efficiency, phase diagrams, dilution robustness, cloud point, particle size, zeta potential (ZP), polydispersity index (PDI), and transmission electron microscopy. In vitro release was assessed using dialysis bag versus dissolution cup methods. NA-SNEDDS were developed with suitable globule size (38.49 ± 4.30 nm), ZP (31.70 ± 3.58 mV), PDI (0.31 ± 0.02), and cloud point (85°C). A-SNEDDS exhibited good globule size (35 ± 2.80 nm), adequate PDI (0.28 ± 0.06), and lower ZP magnitude (-21.20 ± 3.46 mV). Transmission electron microscopy revealed spherical globules and contended data of size analysis. Release studies demonstrated a nonsignificant enhancement of RLX release from NA-SNEDDS compared to drug suspension with the lowest release shown by A-SNEDDS. A conflicting result was elucidated from in vivo trial. A significant enhancement in RLX uptake by endocrine organs was observed after nanocarrier administration compared to RLX suspension. In vivo studies reflected a poor in vitro/in vivo correlation, recommended nanocarrier administration before meals, and did not reveal any advantage for drug loading in the solubilized form (A-SNEDDS). To conclude, NA-SNEDDS possessed superior in vitro characteristics to A-SNEDDS, with equal in vivo potential. NA-SNEDDS elaborated in this work could successfully double RLX delivery to endocrine target organs, with promising consequences of lower dose and side effects of the drug.Keywords: self-nanoemulsifying drug-delivery system, Biopharmaceutics Drug Disposition Classification System, Cremophor EL, endocrine organs, selective estrogen-receptor modulator |
format |
article |
author |
Elsheikh MA Elnaggar YS Gohar EY Abdallah OY |
author_facet |
Elsheikh MA Elnaggar YS Gohar EY Abdallah OY |
author_sort |
Elsheikh MA |
title |
Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
title_short |
Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
title_full |
Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
title_fullStr |
Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
title_full_unstemmed |
Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
title_sort |
nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/e3f2e141a346498f95f0be9192efc508 |
work_keys_str_mv |
AT elsheikhma nanoemulsionliquidpreconcentratesforraloxifenehydrochlorideoptimizationandinvivoappraisal AT elnaggarys nanoemulsionliquidpreconcentratesforraloxifenehydrochlorideoptimizationandinvivoappraisal AT goharey nanoemulsionliquidpreconcentratesforraloxifenehydrochlorideoptimizationandinvivoappraisal AT abdallahoy nanoemulsionliquidpreconcentratesforraloxifenehydrochlorideoptimizationandinvivoappraisal |
_version_ |
1718403713084686336 |