Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment
Ming-Song Lee,1,2 Chao-Ming Su,1 Jih-Chao Yeh,1,3 Pei-Ru Wu,4 Tien-Yao Tsai,1 Shyh-Liang Lou1,2 1Department of Biomedical Engineering, 2Department of Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan; 3Institute of Urology, University of Southern California, Los Angeles, CA, USA; 4De...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e3f3c9005b314551b1f73b72fc30b9dc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e3f3c9005b314551b1f73b72fc30b9dc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e3f3c9005b314551b1f73b72fc30b9dc2021-12-02T03:11:45ZSynthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment1178-2013https://doaj.org/article/e3f3c9005b314551b1f73b72fc30b9dc2016-09-01T00:00:00Zhttps://www.dovepress.com/synthesis-of-composite-magnetic-nanoparticles-fe3o4-with-alendronate-f-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Ming-Song Lee,1,2 Chao-Ming Su,1 Jih-Chao Yeh,1,3 Pei-Ru Wu,4 Tien-Yao Tsai,1 Shyh-Liang Lou1,2 1Department of Biomedical Engineering, 2Department of Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan; 3Institute of Urology, University of Southern California, Los Angeles, CA, USA; 4Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. Keywords: iron oxide, thermotherapy, bisphosphonate, radiofrequency, thermolysisLee MSSu CMYeh JCWu PRTsai TYLou SLDove Medical PressarticleOsteoporosisFe3O4magnetic nanoparticlesradio frequencythermolysisMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 11, Pp 4583-4594 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Osteoporosis Fe3O4 magnetic nanoparticles radio frequency thermolysis Medicine (General) R5-920 |
spellingShingle |
Osteoporosis Fe3O4 magnetic nanoparticles radio frequency thermolysis Medicine (General) R5-920 Lee MS Su CM Yeh JC Wu PR Tsai TY Lou SL Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
description |
Ming-Song Lee,1,2 Chao-Ming Su,1 Jih-Chao Yeh,1,3 Pei-Ru Wu,4 Tien-Yao Tsai,1 Shyh-Liang Lou1,2 1Department of Biomedical Engineering, 2Department of Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan; 3Institute of Urology, University of Southern California, Los Angeles, CA, USA; 4Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. Keywords: iron oxide, thermotherapy, bisphosphonate, radiofrequency, thermolysis |
format |
article |
author |
Lee MS Su CM Yeh JC Wu PR Tsai TY Lou SL |
author_facet |
Lee MS Su CM Yeh JC Wu PR Tsai TY Lou SL |
author_sort |
Lee MS |
title |
Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
title_short |
Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
title_full |
Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
title_fullStr |
Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
title_full_unstemmed |
Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment |
title_sort |
synthesis of composite magnetic nanoparticles fe3o4 with alendronate for osteoporosis treatment |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/e3f3c9005b314551b1f73b72fc30b9dc |
work_keys_str_mv |
AT leems synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment AT sucm synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment AT yehjc synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment AT wupr synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment AT tsaity synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment AT lousl synthesisofcompositemagneticnanoparticlesnbspfe3o4nbspwithalendronateforosteoporosistreatment |
_version_ |
1718401892505092096 |