Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
Abstract Compounds with defined multi-target activity play an increasingly important role in drug discovery. Structural features that might be signatures of such compounds have mostly remained elusive thus far. We have explored the potential of explainable machine learning to uncover structural moti...
Guardado en:
Autores principales: | Christian Feldmann, Maren Philipps, Jürgen Bajorath |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e417e0653e004604a6e4ace6cc0f33c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
por: Christian Feldmann, et al.
Publicado: (2021) -
Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics
por: Raquel Rodríguez-Pérez, et al.
Publicado: (2021) -
Explainable machine-learning predictions for complications after pediatric congenital heart surgery
por: Xian Zeng, et al.
Publicado: (2021) -
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
por: Dávid Péter Kovács, et al.
Publicado: (2021) -
Prediction of caregiver quality of life in amyotrophic lateral sclerosis using explainable machine learning
por: Anna Markella Antoniadi, et al.
Publicado: (2021)