Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning

Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jieming Li, Leyou Zhang, Alexander Johnson-Buck, Nils G. Walter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of SMFM time traces.