Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of S...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e41c9c9671084acbbaf16ef58f178d60 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e41c9c9671084acbbaf16ef58f178d602021-12-02T15:39:12ZAutomatic classification and segmentation of single-molecule fluorescence time traces with deep learning10.1038/s41467-020-19673-12041-1723https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d602020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19673-1https://doaj.org/toc/2041-1723Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of SMFM time traces.Jieming LiLeyou ZhangAlexander Johnson-BuckNils G. WalterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jieming Li Leyou Zhang Alexander Johnson-Buck Nils G. Walter Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
description |
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of SMFM time traces. |
format |
article |
author |
Jieming Li Leyou Zhang Alexander Johnson-Buck Nils G. Walter |
author_facet |
Jieming Li Leyou Zhang Alexander Johnson-Buck Nils G. Walter |
author_sort |
Jieming Li |
title |
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
title_short |
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
title_full |
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
title_fullStr |
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
title_full_unstemmed |
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
title_sort |
automatic classification and segmentation of single-molecule fluorescence time traces with deep learning |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60 |
work_keys_str_mv |
AT jiemingli automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning AT leyouzhang automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning AT alexanderjohnsonbuck automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning AT nilsgwalter automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning |
_version_ |
1718386023489077248 |