Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning

Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jieming Li, Leyou Zhang, Alexander Johnson-Buck, Nils G. Walter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e41c9c9671084acbbaf16ef58f178d60
record_format dspace
spelling oai:doaj.org-article:e41c9c9671084acbbaf16ef58f178d602021-12-02T15:39:12ZAutomatic classification and segmentation of single-molecule fluorescence time traces with deep learning10.1038/s41467-020-19673-12041-1723https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d602020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19673-1https://doaj.org/toc/2041-1723Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of SMFM time traces.Jieming LiLeyou ZhangAlexander Johnson-BuckNils G. WalterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jieming Li
Leyou Zhang
Alexander Johnson-Buck
Nils G. Walter
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
description Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of SMFM time traces.
format article
author Jieming Li
Leyou Zhang
Alexander Johnson-Buck
Nils G. Walter
author_facet Jieming Li
Leyou Zhang
Alexander Johnson-Buck
Nils G. Walter
author_sort Jieming Li
title Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
title_short Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
title_full Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
title_fullStr Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
title_full_unstemmed Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
title_sort automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60
work_keys_str_mv AT jiemingli automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning
AT leyouzhang automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning
AT alexanderjohnsonbuck automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning
AT nilsgwalter automaticclassificationandsegmentationofsinglemoleculefluorescencetimetraceswithdeeplearning
_version_ 1718386023489077248