Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically make analysis time-consuming. Here, the authors have developed an easily accessible software, AutoSiM, for two distinct applications of deep learning to the efficient processing of S...
Guardado en:
Autores principales: | Jieming Li, Leyou Zhang, Alexander Johnson-Buck, Nils G. Walter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e41c9c9671084acbbaf16ef58f178d60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Annotation-efficient deep learning for automatic medical image segmentation
por: Shanshan Wang, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Deep Vision for Breast Cancer Classification and Segmentation
por: Lawrence Fulton, et al.
Publicado: (2021) -
Automatic Detection and Classification of Cough Events Based on Deep Learning
por: Hossein Tabatabaei Seyed Amir, et al.
Publicado: (2020) -
Automatic classification of canine thoracic radiographs using deep learning
por: Tommaso Banzato, et al.
Publicado: (2021)