Optimization and improvement of fake news detection using deep learning approaches for societal benefit
Fake news is a topic that has been discussed for quite some time. Prior to the internet era, it was mostly distributed through yellow journalism, with a focus on sensational news such as crime, rumours, accidents, and amusing news. To rescue the life of people from these fake news propagation, detec...
Enregistré dans:
Auteurs principaux: | Tavishee Chauhan, M.E, Hemant Palivela, PhD |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e42684fa1752492b855e636c44a6d3d5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pengaruh Perceived Enjoyment, Perceived Reciprocal Benefit, dan Learning Culture Terhadap Knowledge Sharing
par: Debby Ummul Hidayah, et autres
Publié: (2021) -
Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier
par: Setiawan Budiman, et autres
Publié: (2021) -
Evaluation of Innovation and Entrepreneurship Ability of Computer Majors Based on Neural Network Optimized by Particle Swarm Optimization
par: Li Ding, et autres
Publié: (2021) -
Content-based fake news classification through modified voting ensemble
par: Jose Fabio Ribeiro Bezerra
Publié: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
par: V. Golovachyova, et autres
Publié: (2020)