Exploring the potential of machine learning for simulations of urban ozone variability
Abstract Machine learning (ML) has emerged as a powerful technique in the Earth system science, nevertheless, its potential to model complex atmospheric chemistry remains largely unexplored. Here, we applied ML to simulate the variability in urban ozone (O3) over Doon valley of the Himalaya. The ML...
Guardado en:
Autores principales: | Narendra Ojha, Imran Girach, Kiran Sharma, Amit Sharma, Narendra Singh, Sachin S. Gunthe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e427481bf236491f82668f22eb027daa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Swarm Intelligence Optimization: An Exploration and Application of Machine Learning Technology
por: Cai Yinying, et al.
Publicado: (2021) -
Classification of UNSW-NB15 dataset using Exploratory Data Analysis using Ensemble Learning
por: Neha Sharma, et al.
Publicado: (2021) -
To Play and To Be Played: Exploring the Design of Urban Machines for Playful Placemaking
por: Louis Chew, et al.
Publicado: (2021) -
Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow
por: Parthiban Loganathan, et al.
Publicado: (2021) -
Modelling and analysis of cutting forces while micro end milling of Ti-alloy using finite element method
por: Bhople Narendra, et al.
Publicado: (2021)