Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling
Herein, we propose a new deep neural network model based on invariant information clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC (EIIC) is a type of contrastive learning; h...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e42e2713bca34346812a69bfb7b2d8bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e42e2713bca34346812a69bfb7b2d8bf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e42e2713bca34346812a69bfb7b2d8bf2021-12-01T21:27:09ZExtended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling1662-519610.3389/fninf.2021.709179https://doaj.org/article/e42e2713bca34346812a69bfb7b2d8bf2021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fninf.2021.709179/fullhttps://doaj.org/toc/1662-5196Herein, we propose a new deep neural network model based on invariant information clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC (EIIC) is a type of contrastive learning; however, unlike the original IIC, it is characterized by transfer learning with labeled data pairs, but without the need for a data augmentation technique. Each site in LOSO-CV is left out in turn from the remaining sites used for training and receives a value for modeling evaluation. We applied the EIIC to the resting state functional connectivity magnetic resonance imaging dataset of the Autism Brain Imaging Data Exchange. The challenging nature of brain analysis for autism spectrum disorder (ASD) can be attributed to the variability of subjects, particularly the rapid change in the neural system of children as the target ASD age group. However, EIIC demonstrated higher LOSO-CV classification accuracy for the majority of scanning locations than previously used methods. Particularly, with the adjustment of a mini-batch size, EIIC outperformed other classifiers with an accuracy >0.8 for the sites with highest mean age of the subjects. Considering its effectiveness, our proposed method might be promising for harmonization in other domains, owing to its simplicity and intrinsic flexibility.Naoki OkamotoHiroyuki AkamaHiroyuki AkamaFrontiers Media S.A.articledeep learningresting functional connectivity MRIharmonizationleave-one-site-out cross-validationABIDENeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Neuroinformatics, Vol 15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
deep learning resting functional connectivity MRI harmonization leave-one-site-out cross-validation ABIDE Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
deep learning resting functional connectivity MRI harmonization leave-one-site-out cross-validation ABIDE Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Naoki Okamoto Hiroyuki Akama Hiroyuki Akama Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
description |
Herein, we propose a new deep neural network model based on invariant information clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC (EIIC) is a type of contrastive learning; however, unlike the original IIC, it is characterized by transfer learning with labeled data pairs, but without the need for a data augmentation technique. Each site in LOSO-CV is left out in turn from the remaining sites used for training and receives a value for modeling evaluation. We applied the EIIC to the resting state functional connectivity magnetic resonance imaging dataset of the Autism Brain Imaging Data Exchange. The challenging nature of brain analysis for autism spectrum disorder (ASD) can be attributed to the variability of subjects, particularly the rapid change in the neural system of children as the target ASD age group. However, EIIC demonstrated higher LOSO-CV classification accuracy for the majority of scanning locations than previously used methods. Particularly, with the adjustment of a mini-batch size, EIIC outperformed other classifiers with an accuracy >0.8 for the sites with highest mean age of the subjects. Considering its effectiveness, our proposed method might be promising for harmonization in other domains, owing to its simplicity and intrinsic flexibility. |
format |
article |
author |
Naoki Okamoto Hiroyuki Akama Hiroyuki Akama |
author_facet |
Naoki Okamoto Hiroyuki Akama Hiroyuki Akama |
author_sort |
Naoki Okamoto |
title |
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
title_short |
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
title_full |
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
title_fullStr |
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
title_full_unstemmed |
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling |
title_sort |
extended invariant information clustering is effective for leave-one-site-out cross-validation in resting state functional connectivity modeling |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/e42e2713bca34346812a69bfb7b2d8bf |
work_keys_str_mv |
AT naokiokamoto extendedinvariantinformationclusteringiseffectiveforleaveonesiteoutcrossvalidationinrestingstatefunctionalconnectivitymodeling AT hiroyukiakama extendedinvariantinformationclusteringiseffectiveforleaveonesiteoutcrossvalidationinrestingstatefunctionalconnectivitymodeling AT hiroyukiakama extendedinvariantinformationclusteringiseffectiveforleaveonesiteoutcrossvalidationinrestingstatefunctionalconnectivitymodeling |
_version_ |
1718404604609167360 |