Discovery of food identity markers by metabolomics and machine learning technology
Abstract Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to effi...
Enregistré dans:
Auteurs principaux: | Alexander Erban, Ines Fehrle, Federico Martinez-Seidel, Federico Brigante, Agustín Lucini Más, Veronica Baroni, Daniel Wunderlin, Joachim Kopka |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e43a47c8e9e649ffb640ab938f2e05ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mass spectrometry-based metabolomics for the discovery of candidate markers of flavonoid and polyphenolic intake in adults
par: David Charles, et autres
Publié: (2021) -
Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.
par: Sriram Devanathan, et autres
Publié: (2014) -
Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism
par: Christopher Pries, et autres
Publié: (2021) -
Machine learning for chemical discovery
par: Alexandre Tkatchenko
Publié: (2020) -
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery
par: Bahar Behsaz, et autres
Publié: (2021)