Discovery of food identity markers by metabolomics and machine learning technology
Abstract Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to effi...
Guardado en:
Autores principales: | Alexander Erban, Ines Fehrle, Federico Martinez-Seidel, Federico Brigante, Agustín Lucini Más, Veronica Baroni, Daniel Wunderlin, Joachim Kopka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e43a47c8e9e649ffb640ab938f2e05ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mass spectrometry-based metabolomics for the discovery of candidate markers of flavonoid and polyphenolic intake in adults
por: David Charles, et al.
Publicado: (2021) -
Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.
por: Sriram Devanathan, et al.
Publicado: (2014) -
Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism
por: Christopher Pries, et al.
Publicado: (2021) -
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery
por: Bahar Behsaz, et al.
Publicado: (2021)