Passive Beamforming and Trajectory Optimization for Reconfigurable Intelligent Surface-Assisted UAV Secure Communication
Unmanned aerial vehicle (UAV) and reconfigurable intelligent surface (RIS) methods are promising techniques for improving the energy and spectrum efficiency of Fifth Generation/Beyond Fifth Generation (5G/B5G) networks. In order to take advantage of both techniques, we propose an RIS-assisted UAV se...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e44c7b5242014ee9b76dfa8a91c02700 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Unmanned aerial vehicle (UAV) and reconfigurable intelligent surface (RIS) methods are promising techniques for improving the energy and spectrum efficiency of Fifth Generation/Beyond Fifth Generation (5G/B5G) networks. In order to take advantage of both techniques, we propose an RIS-assisted UAV secure communication scheme, where an UAV is equipped with RIS to facilitate secure transmission. To maximize the average secrecy rate, we jointly optimize the beamforming power, reflect phase shift, and UAV’s trajectory. For this non-convex problem, we decompose it into the power beamforming problem, the phase shift optimization problem, and the UAV’s trajectory design problem, and proposed an efficient iterative algorithm to solve the problem. The numerical results verify the superiority of the proposed scheme that can improve the average secure transmission rate by about 20% compared to that of Eavesdropping elimination methods. |
---|