Deep reinforcement learning for efficient measurement of quantum devices
Abstract Deep reinforcement learning is an emerging machine-learning approach that can teach a computer to learn from their actions and rewards similar to the way humans learn from experience. It offers many advantages in automating decision processes to navigate large parameter spaces. This paper p...
Guardado en:
Autores principales: | V. Nguyen, S. B. Orbell, D. T. Lennon, H. Moon, F. Vigneau, L. C. Camenzind, L. Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, N. Ares |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e474432013bf4457b5b6d76522722bc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise-robust exploration of many-body quantum states on near-term quantum devices
por: Johannes Borregaard, et al.
Publicado: (2021) -
Secure quantum key distribution with a subset of malicious devices
por: Víctor Zapatero, et al.
Publicado: (2021) -
Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
por: R. I. Woodward, et al.
Publicado: (2021) -
Quantum teleportation with imperfect quantum dots
por: F. Basso Basset, et al.
Publicado: (2021) -
Optimizing experimental design for genome sequencing and assembly with Oxford Nanopore Technologies
por: John M. Sutton, et al.
Publicado: (2021)