Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS).
Visual fields measured with standard automated perimetry are a benchmark test for determining retinal function in ocular pathologies such as glaucoma. Their monitoring over time is crucial in detecting change in disease course and, therefore, in prompting clinical intervention and defining endpoints...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e47684cee2784a809e3c899618646140 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e47684cee2784a809e3c899618646140 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e47684cee2784a809e3c8996186461402021-11-18T08:37:27ZDetecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS).1932-620310.1371/journal.pone.0085654https://doaj.org/article/e47684cee2784a809e3c8996186461402014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24465636/?tool=EBIhttps://doaj.org/toc/1932-6203Visual fields measured with standard automated perimetry are a benchmark test for determining retinal function in ocular pathologies such as glaucoma. Their monitoring over time is crucial in detecting change in disease course and, therefore, in prompting clinical intervention and defining endpoints in clinical trials of new therapies. However, conventional change detection methods do not take into account non-stationary measurement variability or spatial correlation present in these measures. An inferential statistical model, denoted 'Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement' (ANSWERS), was proposed. In contrast to commonly used ordinary linear regression models, which assume normally distributed errors, ANSWERS incorporates non-stationary variability modelled as a mixture of Weibull distributions. Spatial correlation of measurements was also included into the model using a Bayesian framework. It was evaluated using a large dataset of visual field measurements acquired from electronic health records, and was compared with other widely used methods for detecting deterioration in retinal function. ANSWERS was able to detect deterioration significantly earlier than conventional methods, at matched false positive rates. Statistical sensitivity in detecting deterioration was also significantly better, especially in short time series. Furthermore, the spatial correlation utilised in ANSWERS was shown to improve the ability to detect deterioration, compared to equivalent models without spatial correlation, especially in short follow-up series. ANSWERS is a new efficient method for detecting changes in retinal function. It allows for better detection of change, more efficient endpoints and can potentially shorten the time in clinical trials for new therapies.Haogang ZhuRichard A RussellLuke J SaundersStefano CecconDavid F Garway-HeathDavid P CrabbPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 1, p e85654 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Haogang Zhu Richard A Russell Luke J Saunders Stefano Ceccon David F Garway-Heath David P Crabb Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
description |
Visual fields measured with standard automated perimetry are a benchmark test for determining retinal function in ocular pathologies such as glaucoma. Their monitoring over time is crucial in detecting change in disease course and, therefore, in prompting clinical intervention and defining endpoints in clinical trials of new therapies. However, conventional change detection methods do not take into account non-stationary measurement variability or spatial correlation present in these measures. An inferential statistical model, denoted 'Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement' (ANSWERS), was proposed. In contrast to commonly used ordinary linear regression models, which assume normally distributed errors, ANSWERS incorporates non-stationary variability modelled as a mixture of Weibull distributions. Spatial correlation of measurements was also included into the model using a Bayesian framework. It was evaluated using a large dataset of visual field measurements acquired from electronic health records, and was compared with other widely used methods for detecting deterioration in retinal function. ANSWERS was able to detect deterioration significantly earlier than conventional methods, at matched false positive rates. Statistical sensitivity in detecting deterioration was also significantly better, especially in short time series. Furthermore, the spatial correlation utilised in ANSWERS was shown to improve the ability to detect deterioration, compared to equivalent models without spatial correlation, especially in short follow-up series. ANSWERS is a new efficient method for detecting changes in retinal function. It allows for better detection of change, more efficient endpoints and can potentially shorten the time in clinical trials for new therapies. |
format |
article |
author |
Haogang Zhu Richard A Russell Luke J Saunders Stefano Ceccon David F Garway-Heath David P Crabb |
author_facet |
Haogang Zhu Richard A Russell Luke J Saunders Stefano Ceccon David F Garway-Heath David P Crabb |
author_sort |
Haogang Zhu |
title |
Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
title_short |
Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
title_full |
Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
title_fullStr |
Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
title_full_unstemmed |
Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS). |
title_sort |
detecting changes in retinal function: analysis with non-stationary weibull error regression and spatial enhancement (answers). |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/e47684cee2784a809e3c899618646140 |
work_keys_str_mv |
AT haogangzhu detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers AT richardarussell detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers AT lukejsaunders detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers AT stefanoceccon detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers AT davidfgarwayheath detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers AT davidpcrabb detectingchangesinretinalfunctionanalysiswithnonstationaryweibullerrorregressionandspatialenhancementanswers |
_version_ |
1718421593908051968 |