Traffic Flow Online Prediction Based on a Generative Adversarial Network with Multi-Source Data
Traffic prediction is essential for advanced traffic planning, design, management, and network sustainability. Current prediction methods are mostly offline, which fail to capture the real-time variation of traffic flows. This paper establishes a sustainable online generative adversarial network (GA...
Guardado en:
Autores principales: | Tuo Sun, Bo Sun, Zehao Jiang, Ruochen Hao, Jiemin Xie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e47cb2e205de4e02832f6869a1831cc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Deep Learning of Simultaneous Intracranial and Scalp EEG for Prediction, Detection, and Lateralization of Mesial Temporal Lobe Seizures
por: Zan Li, et al.
Publicado: (2021) -
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
por: Wensong Zhang, et al.
Publicado: (2021) -
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Nandhini Abirami R., et al.
Publicado: (2021)