Improving the performance of ghost imaging via measurement-driven framework
Abstract High-quality reconstruction under a low sampling rate is very important for ghost imaging. How to obtain perfect imaging results from the low sampling rate has become a research hotspot in ghost imaging. In this paper, inspired by matrix optimization in compressed sensing, an optimization s...
Guardado en:
Autores principales: | Hanqiu Kang, Yijun Wang, Ling Zhang, Duan Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e483c2557bc94691a4983e78d3a97ea3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepGhost: real-time computational ghost imaging via deep learning
por: Saad Rizvi, et al.
Publicado: (2020) -
Counterfactual ghost imaging
por: Jonte R. Hance, et al.
Publicado: (2021) -
Gradient-Descent-like Ghost Imaging
por: Wen-Kai Yu, et al.
Publicado: (2021) -
Experimental demonstration of spectral domain computational ghost imaging
por: Piotr Ryczkowski, et al.
Publicado: (2021) -
Information Security Scheme Based on Computational Temporal Ghost Imaging
por: Shan Jiang, et al.
Publicado: (2017)