Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image Scene Classification
Different from the traditional remote sensing (RS) scene classification which uses a single scene label to holistically annotate an image, multilabel RS image classification uses a series of object labels to interpret a scene more deeply. For multilabel RS scene classification, there exist two vital...
Guardado en:
Autores principales: | Xin Wang, Lin Duan, Chen Ning |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e491c9abdec14b8588818292887fcc29 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Urban Functional Zone Mapping With a Bibranch Neural Network via Fusing Remote Sensing and Social Sensing Data
por: Runyu Fan, et al.
Publicado: (2021) -
Design and Analysis of CubeSat Microwave Radiometer Constellations to Observe Temporal Variability of the Atmosphere
por: Yuriy V. Goncharenko, et al.
Publicado: (2021) -
Long-Term Resilience Curve Analysis of Wenchuan Earthquake-Affected Counties Using DMSP-OLS Nighttime Light Images
por: Zhumei Liu, et al.
Publicado: (2021)