Effects of Second-Order Hydrodynamics on the Dynamic Responses and Fatigue Damage of a 15 MW Floating Offshore Wind Turbine
In order to investigate the effects of second-order hydrodynamic loads on a 15 MW floating offshore wind turbine (FOWT), this study employs a tool that integrates AQWA and OpenFAST to conduct fully coupled simulations of the FOWT subjected to wind and wave loadings. The load cases covering normal an...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e491e6b6e24a4b32824deae0291561ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In order to investigate the effects of second-order hydrodynamic loads on a 15 MW floating offshore wind turbine (FOWT), this study employs a tool that integrates AQWA and OpenFAST to conduct fully coupled simulations of the FOWT subjected to wind and wave loadings. The load cases covering normal and extreme conditions are defined based on the met-ocean data observed at a specific site. The results indicate that the second-order wave excitations activate the surge mode of the platform. As a result, the surge motion is increased for each of the examined load case. In addition, the pitch, heave, and yaw motions are underestimated when neglecting the second-order hydrodynamics under the extreme condition. First-order wave excitation is the major contributor to the tower-base bending moments. The fatigue damage of the tower-base under the extreme condition is underestimated by 57.1% if the effect of second-order hydrodynamics is ignored. In addition, the accumulative fatigue damage over 25 years at the tower-base is overestimated by 16.92%. Therefore, it is suggested to consider the effects of second-order wave excitations of the floating platform for the design of the tower to reduce the cost of the FOWT. |
---|