Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data

There are no robust methods for systematically identifying mutation-specific synthetic lethal (SL) partners in cancer. Here, the authors develop a computational algorithm that uses pan-cancer data to detect mutation-andcancer-specific SL partners and they validate a novel SL interaction between muta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Subarna Sinha, Daniel Thomas, Steven Chan, Yang Gao, Diede Brunen, Damoun Torabi, Andreas Reinisch, David Hernandez, Andy Chan, Erinn B. Rankin, Rene Bernards, Ravindra Majeti, David L. Dill
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/e49e620b8adf451f9e5a7aa02173d0b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:There are no robust methods for systematically identifying mutation-specific synthetic lethal (SL) partners in cancer. Here, the authors develop a computational algorithm that uses pan-cancer data to detect mutation-andcancer-specific SL partners and they validate a novel SL interaction between mutant IDH and loss of ACACA in leukaemia.