Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay

In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Norouzi Fatemeh, N’guérékata Gaston M.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem.